Analysis of the Impact of Defect Evolution on the Storage Life of Electronic Fuzes under Hot-Humid Environments

ZHANG Cheng, ZHANG Cong, YU Junmiao, SHI Rui, LI Haiming

Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (10) : 11-17.

PDF(1443 KB)
PDF(1443 KB)
Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (10) : 11-17. DOI: 10.7643/ issn.1672-9242.2025.10.002
Weapons Equipment

Analysis of the Impact of Defect Evolution on the Storage Life of Electronic Fuzes under Hot-Humid Environments

  • ZHANG Cheng1, ZHANG Cong1, *, YU Junmiao2, SHI Rui1, LI Haiming1
Author information +
History +

Abstract

The work aims to identify the main defect types and life evolution characteristics of electronic fuzes under hot and humid conditions, investigate the impact of environmental stress on fuze storage life, and develop a life prediction model suitable for hot and humid stress fields. The typical failure modes of electronic fuzes under hot and humid storage conditions were analyzed to identify key defects and failure paths. Based on this, the Hallberg-Peck acceleration model and the Weibull distribution function were introduced to establish a life modeling method focused on defect evolution, with model verification and lifespan prediction performed with constructed sample data. Simulation results showed that the model could effectively reflect the degradation trend of fuze life in a hot and humid environment, with the acceleration factor being consistent with actual stress level variations. The fitted distribution demonstrates good interpretability and adaptability. The life model based on defect-dominated mechanisms can effectively assess the impact of hot and humid stress on fuze life, offering high engineering applicability and providing a methodological and theoretical foundation for the integration of defect detection and life prediction in future work.

Key words

electronic fuze / hot-humid environment / defect evolution / accelerated life / Weibull distribution / life modeling / Monte Carlo simulation

Cite this article

Download Citations
ZHANG Cheng, ZHANG Cong, YU Junmiao, SHI Rui, LI Haiming. Analysis of the Impact of Defect Evolution on the Storage Life of Electronic Fuzes under Hot-Humid Environments[J]. Equipment Environmental Engineering. 2025, 22(10): 11-17 https://doi.org/10.7643/ issn.1672-9242.2025.10.002

References

[1] 张合. 引信与环境[J]. 探测与控制学报, 2019, 41(1): 1-5.
ZHANG H.Fuze and Environment[J]. Journal of Detection & Control, 2019, 41(1): 1-5.
[2] 马宝华. 现代引信的控制功能及特征[J]. 探测与控制学报, 2008, 30(1): 1-5.
MA B H.Control Function and Characteristics of Modern Fuzes[J]. Journal of Detection & Control, 2008, 30(1): 1-5.
[3] 张合. 引信的过去、现在与未来[J]. 探测与控制学报, 2023, 45(5): 1-6.
ZHANG H. The Past, Present and Future of Fuze[J]. Journal of Detection & Control, 2023, 45(5): 1-6.
[4] 李昕哲, 何博, 陈敬文, 等. 高温潮湿环境引信长期贮存失效特性研究综述[J/OL]. 探测与控制学报, 2024: 1-11. (2024-12-13). https://kns.cnki.net/kcms/detail/61. 1316.tj.20241212.1550.015.html.
LI X Z, HE B, CHEN J W, et al. Summary of Research on Long-Term Storage Failure Characteristics of Fuze in High Temperature and Humid Environment[J/OL]. Journal of Detection & Control, 2024: 1-11. (2024-12-13). https://kns.cnki.net/kcms/detail/61.1316.tj.20241212.1550.015.html.
[5] 娄文忠, 李昕哲, 何博, 等. 湿热应力对引信老化行为的影响分析[J]. 装备环境工程, 2023, 20(10): 47-55.
LOU W Z, LI X Z, HE B, et al.Analysis of the Effect of Hygrothermal Stress on the Aging Behavior of a Certain Type of Fuze[J]. Equipment Environmental Engineering, 2023, 20(10): 47-55.
[6] 郭俊伶, 彭志凌, 班伟. 基于遗传BP算法预测贮存寿命[J]. 装备环境工程, 2024, 21(8): 32-38.
GUO J L, PENG Z L, BAN W.Prediction of Storage Life Based on Genetic BP Algorithm[J]. Equipment Environmental Engineering, 2024, 21(8): 32-38.
[7] 王晓, 赵河明, 彭志凌. 基于Weibull分布的机电引信贮存寿命预测[J]. 兵工自动化, 2018, 37(11): 72-75.
WANG X, ZHAO H M, PENG Z L.Storage Life Prediction of Electromechanical Fuse Based on Weibull Distribution[J]. Ordnance Industry Automation, 2018, 37(11): 72-75.
[8] 姚松涛, 崔洁, 赵河明, 等. 引信步进应力加速试验贮存寿命预测研究[J]. 装备环境工程, 2024, 21(2): 51-58.
YAO S T, CUI J, ZHAO H M, et al.Storage Life Prediction of Fuze under Step Stress Accelerated Test[J]. Equipment Environmental Engineering, 2024, 21(2): 51-58.
[9] 郑波, 梁兵, 方兴桥. 湿热环境下某引信储存寿命评估[J]. 装备环境工程, 2011, 8(6): 1-2.
ZHENG B, LIANG B, FANG X Q.Estimation of Fuze Storage Life in Damp-Heat Environment[J]. Equipment Environmental Engineering, 2011, 8(6): 1-2.
[10] 罗文新, 岳明凯, 张骢, 等. 多应力下电子引信薄弱部件加速寿命模型研究[J]. 装备环境工程, 2024, 21(12): 28-33.
LUO W X, YUE M K, ZHANG C, et al.Accelerated Life Model of Weak Components of Electronic Fuze under Multiple Stresses[J]. Equipment Environmental Engineering, 2024, 21(12): 28-33.
[11] 娄文忠, 李诗怡, 吕斯宁, 等. 基于故障模式影响及危害性分析的引信可靠性分析方法[J]. 探测与控制学报, 2025, 47(1): 49-56.
LOU W Z, LI S Y, LYU S N, et al.Fuze Reliability Analysis Based on Fault Mode Effects and Criticality[J]. Journal of Detection & Control, 2025, 47(1): 49-56.
[12] 王裕鹏, 高鑫, 陈文淼, 等. 基于Arrhenius模型的汽车电子产品加速寿命试验设计分析[J]. 装备环境工程, 2019, 16(3): 22-25.
WANG Y P, GAO X, CHEN W M, et al.Design of Accelerated Life Test for Automotive Electronics Based on Arrhenius Model[J]. Equipment Environmental Engineering, 2019, 16(3): 22-25.
[13] 柳爱利, 寇方勇. 海洋环境对舰载导弹贮存可靠性影响分析[J]. 海军航空工程学院学报, 2013, 28(3): 285-288.
LIU A L, KOU F Y.Analysis of Storage Reliability of Shipborne Missiles in Marine Environment[J]. Journal of Naval Aeronautical and Astronautical University, 2013, 28(3): 285-288.
[14] 张国龙, 蔡金燕, 梁玉英, 等. 电子装备多应力加速退化试验技术及可靠性评估方法研究[J]. 航空学报, 2013, 34(12): 2815-2822.
ZHANG G L, CAI J Y, LIANG Y Y, et al.Research on Reliability Assessment Method of Electronic Equipment Based on Multi-Stress ADT[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(12): 2815-2822.
[15] 杨涛, 汪旭, 肖江林. 铝电解电容器加速退化试验设计与寿命预测研究[J]. 控制与信息技术, 2022(1): 114-120.
YANG T, WANG X, XIAO J L.Research on Accelerated Degradation Test Design and Life Prediction for Aluminum Electrolytic Capacitor[J]. Control and Information Technology, 2022(1): 114-120.
[16] 李晓阳, 姜同敏. 加速寿命试验中多应力加速模型综述[J]. 系统工程与电子技术, 2007, 29(5): 828-831.
LI X Y, JIANG T M.Review of Multiple-Stress Models in Accelerated Life Testing[J]. Systems Engineering and Electronics, 2007, 29(5): 828-831.
[17] 周洁, 姚军, 苏泉, 等. 综合应力加速贮存试验方案优化设计[J]. 航空学报, 2015, 36(4): 1202-1211.
ZHOU J, YAO J, SU Q, et al.Optimum Design of Accelerated Storage Test Plan under Multiple Stresses[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4): 1202-1211.
[18] ARRHENIUS S. Über Die Dissociationswärme Und Den Einfluss Der Temperatur Auf Den Dissociationsgrad Der Elektrolyte[J]. Zeitschrift Für Physikalische Chemie, 1889, 4U(1): 96-116.
[19] LIBRE T C.The Arrhenius Law-Activation Energies[C]// 2013 International Conference on Electronic Packaging Technology. [s. l.]: IEEE, 2022.
[20] 刘佩风, 王毅飞, 白明明, 等. 电子整机加速贮存试验及寿命评估方法研究[J]. 强度与环境, 2018, 45(1): 57-62.
LIU P F, WANG Y F, BAI M M, et al.Study on Storage Accelerated Aging Test and Life Assessment of Assembly Product[J]. Structure & Environment Engineering, 2018, 45(1): 57-62.
[21] 刘伟钊, 李蓉. 基于性能退化的机电引信部件贮存寿命评估方法[J]. 探测与控制学报, 2022, 44(3): 17-21.
LIU W Z, LI R.Storage Life Evaluation of Electromechanical Fuze Components Based on Performance Degradation[J]. Journal of Detection & Control, 2022, 44(3): 17-21.
[22] 段飞飞, 苏振李, 王田宇, 等. 整机加速贮存试验与寿命快速评价方案设计[J]. 中国工程机械学报, 2024, 22(4): 556-560.
DUAN F F, SU Z L, WANG T Y, et al.Design of Accelerated Storage Test and Rapid Life Evaluation Scheme for Whole Machine[J]. Chinese Journal of Construction Machinery, 2024, 22(4): 556-560.
[23] 秦强, 张生鹏. 综合环境条件下电子装备贮存寿命加速试验方法研究[J]. 装备环境工程, 2019, 16(3): 81-87.
QIN Q, ZHANG S P.Accelerated Storage Test of Electric Equipment under Integrated Environmental Stresses[J]. Equipment Environmental Engineering, 2019, 16(3): 81-87.
[24] 李道清, 王德元. 某无线电引信加速寿命试验研究[J]. 探测与控制学报, 2000, 22(4): 57-61.
LI D Q, WANG D Y.Study on the Long Term Storage Stepping Steress Accelerated Life Test of a Radio Fuze[J]. Journal of Detection & Control, 2000, 22(4): 57-61.
[25] 郭华, 祝逢春, 豆仁福, 等. 引信步进应力加速寿命试验无失效数据情况贮存寿命评估[J]. 装备环境工程, 2023, 20(2): 26-31.
GUO H, ZHU F C, DOU R F, et al.Evaluation of Storage Life of Fuze via Step-Stress Accelerated Life Test with Zero-Failure Data[J]. Equipment Environmental Engineering, 2023, 20(2): 26-31.
PDF(1443 KB)

Accesses

Citation

Detail

Sections
Recommended

/